Peltier, Hannah

From: Sent: To: Cc: Subject: Attachments: Torrence, Rufus Wednesday, March 06, 2013 10:44 AM droach@amerimax.com Peltier, Hannah AFIN 54-00132 AR0043389 Amerimax August 2012 Semi-Annual Report AMX Feb 2013 SAR.pdf

A R K A N S A S Department of Environmenta Quekty

March 5, 2013

Mr. Dan Roach Amerimax Coated Products 215 Phillips 324 Road Helena, AR 72342

Re: Amerimax February 2013 Semi-Annual Report (Permit No. AR000043389 AFIN 54-00132)

Dear Mr. Roach:

The Department has reviewed Amerimax's February 2013 Semi-annual Pretreatment Report and the report is complete. However, the Department has concerns.

(1). Since the math model assumes all wastewater is collected in one tank for each line, all measured concentrations must comply with the calculated allowable monthly limit. The model does not allow Amerimax to calculate a "Maximum for any 1 day" allowable limit. Therefore, all the measured concentrations must also comply with the allowable monthly limit including the maximum measured concentration. The report shows that Amerimax is compliant with this requirement.

(2) Amerimax did not show the correct allowable limits in the chart in Section 5.C in the report. The Department inserted the correct limits. Note that limits for both the Galvanized line and Aluminum line must be shown to verify compliance.

(3) Amerimax must sample the wastewater for the "Galvanized line" when the facility is coating galvanized steel and, similarly, Amerimax must sample the wastewater for the "Aluminum line" when the facility is coating aluminum.

The Department appreciates Amerimax's continued efforts in semi-annual reporting. If you have any questions or concerns, please contact the Department at (501) 682-0626 or by email at torrence@adeq.state.ar.us.

Sincerely,

Grince

Rufus Torrence, Pretreatment Engineer Water Division

ARKANSAS DEPARTMENT OF ENV 5301 NORTHSHORE DRIVE / NORTHHITTLE ROCK / ARKANSAS 7211 www.gdeg.store

SEMI-ANNUAL REPORT FOR INDUSTRIAL USERS REGULATED BY 40CFR465

• "

Use of this form is not an EPA/PC&E requirement.	Attn: Water Div/NPDES Pretreatment
(1) IDENTIFYING INFORMATION	\mathbf{x}
A. LEGAL NAME & MAILING ADDRESS	B. FACILITY & LOCATION ADDRESS
Amerimax Coated Products, Inc.	Amerimax Coated Products, Inc.
215 Phillips 324 Road Helena, AR 72342	215 Phillips 324 Road Helena, AR 72342
\mathcal{V}	
ext 322	
C. FACILITY CONTACT: Dan Roach	TELEPHONE NUMBER: (870) 572-5074 \checkmark 3224
(2) REPORTING PERIOD-FISCAL VEAR From Aug 1 to Jul	31 (Both Semi-Annual Reports must cover Fiscal Year)
A. MONTHS WHICH REPORTS ARE DHE	B. PERIOD COVERED BY THIS REPORT
August & February	FROM: September 2012 TO: February 2013
(3) DESCRIPTION OF OPERATION	
A. REGULATED PROCESSES	B. CHANGES: SUMMARIZE ANY CHANGES IN THE REGULATED PROCESSES SINCE THE LAST REPORT. ATTACH AN ADDITIONAL SHEET IF THE SPACE BELOW IS INADEQUATE. PROVIDEA NEW SCHEMATIC IF
40 CFR Part 465 Coil Coating Point Source Category	APPROPRIATE.
	ala
	Q/ζ
PROCESS [*] PROD'N RATE(S) PROD'N DAYS	
Total for Six Months Number of Operating Days Subpart A Steel N/P	
242 Subpart B Galv <u>10,155,790 ft² 15</u>	
2y ² Subpart C Alum <u>93,930,238 ft²</u> <u>137</u>	
Subpart D Canmak <u>N/P</u>	AMX Leb 2013 SAN
[*] Show Rate & Days—If process is not present, show "Not Present" or "N/P".	AMX Leb 2013 SAN Filedate 2013 0304
Recid by email dated	
2-28-20 13 @ 4:07 pm	ARPØØ1044
D Only, one production line; Zhis line runs both gatvanize and aluminum rosss,	
C. Number of Regular Employees at this Facility42	D. [Reserved] 5163479
Ofroduction must be entered (1), 76 sqft and volume in m ² and volume in m ²	d into ANPCAN is square fee gegallons (3.785 sitersgallon) Drod'n days must be sess
B) The total number of A Ehan 182 (7×26 w	prod'n days must be jess reeks => 182 days).

40CFR465 SEMI-ANNUAL REPORT CON'D FACILITY NAME: _____ Amerimax

-				.							
(4) FLOW ME	ASUREMENT (CON	119. A. 190. 10000				. Souther and the second s					
ſ	B. INDIVIDUAL PROC	ESS FLOV	WS DISCHAI	RGED TO F	OTW IN C	ALLONS	PER DAY (gp	d)	1		
	Operation		Ave Tot Fl	ow ¹	Max Tot	Flow ²	Type of D	ischarge	No. Dis	sc Days	
0	Regulated: Steel Ba	sis	N/P						<u> </u>		
Kegz	Regulated: Galv Ba	sis	3,571.3		20,541	.6				15	
Key 3	Regulated: Alum B	asis	3,571.3		20,54	.6			<u> </u>	137	
,	Regulated: Canmal	cing	N/P								
	Total Regulated										
	§403.6(e) Unregula	ted ³					<u></u>				-
	§403.6(e) Dilute						:				
Cooling Water											
	Sanitary 1,425 1,425 continuous										
	Total Flow to POT	w	****				******	******	*****	****	-
¹ "Ave Tot Flow" is the average of "total gallons discharged in a 24-hour day" during the reporting period. Note that "Ave Tot Flow" times "No. Disc Days" must equal the <u>actual total gallons discharged to the POTW for this six month period</u> . ² "Max Tot Flow" is the maximum "total gallons discharged in a 24-hour day" during the reporting period. ³ "Unregulated" has a precise legal meaning; see 40CFR403.6(e).											
(5) MEASURE	MENT OF POLLUT	ANTS									
A. TYPE OF TRE CHECK EACH CHECK EACH Che Che Che Che Che Che Che Che Che Che	CATMENT SYSTEM APPLICABLE BLOCK itralization emical Precipitation a comium Reduction mide Destruction her Filter Press		mentation			B. COMM	ENTS ON TRI	EATMENT (SYSTEM		
(AFTER	E INDUSTRIAL USER M R TREATMENT, IF APPI TICAL DATA COLLECT CCEPTABLE; LIST THE	ICABLE) TED DURI DETECT	ATTACH T	THE LAB A	NALYSIS	WHICH SI	HOWS A MAX PROVIDED E	ELOW, ZE	BULATE A	ENTRATIONS	ARE
Pollu	tant Cd	Čr,	Cu	Pb	Ni	Ag	Zn	O&G	CN*	Phen T	то*
MEC (m		10.14	NOAA				N.39A		18.084		
AEC (m	g/l)	0134	0.10				Ø 0.32 Ø 94		0.18		
AMMC	(mg/l)	<0.007 Alum and Galv	<0.006 Galv				0.19 Alum 0.20 Galv		/<0.01 Alum and Galv <0.01		
AMAC (g)	<0.007 Alum and Galv	Gaiv				0.19 Alum 0.20 Galv		Alum and Galy		
*Provide C	one for February report;										
Sample											•
	Гуре (Grab or Comp										
8	of Samples and Freq										
40CFR1	36 Preservation and	Analytic	al Methods	s Use: 🛱	Yes L	I NO					

40CFR465 SEMI-ANNUAL REPORT CON'D FACILITY NAME: ______ Amerimax

. .

(7) POLLUTION PREVENTION ACT OF 1990 [42 U.S.C.	
whenever feasible; pollution that cannot be prevented should be recycled in an environme environmentally safe manner whenever feasible; and disposal or other release into the en	tares it to be the national policy of the United States that pollution should be prevented or reduced at the source entally safe manner, whenever feasible; pollution that cannot be prevented or recycled should be treated in an wironment should be employed only as a last resort and should be conducted in an environmentally safe manner.
The User may list any new or ongoing Pollution Preventi	on practices:
	:
(8) GENERAL COMMENTS	
(9) SIGNATORY REQUIREMENTS [40CFR403.12(l)]	
I certify under penalty of law that I have personally compliance report and all attachments, and that, b obtaining the information contained in the report, aware that there are significant penalties for submi imprisonment.	y examined and am familiar with the information in this semi-annual ased on my inquiry of those persons immediately responsible for I believe that the information is true, accurate and complete. I am itting false information, including the possibility of fine and
Dan Roach NAME OF CORPORATE OFFICER OR AUTHORIZED REP	RESENTATIVE SIGNATURE
Plant Manager OFFICIAL TITLE	2/28/13 DATE SIGNED

40CFR465 SEMI-ANNUAL REPORT CON'D FACILITY NAME: Amerimax

(6) CERTIFICATION
A. CHECK ONE: 🖾 CYANIDE ANALYSIS ATTACHED 🛛 EPA REGION VI CYANIDE CERTIFICATION PROVIDED BELOW
Based on my inquiry of the person or persons directly responsible for managing compliance with pretreatment standards, I certify that, to the best of my knowledge, cyanide has not been used or generated in our processes, which are regulated by the Coil Coating [40 CFR 465.03(a)] categorical pretreatment standards, since we filed the February semi-annual compliance report; the cyanide analysis, in the February report of this calendar year contain less than 0.07 mg/l. I understand that I can submit this certification for only the August report.
Dan Roach (Typed Name) D D (Corporate Officer or authorized representative signature) Date of Signature 2/28/13
B. [Reserved]
[RESERVED]
ORPORATE ACKNOWLEDGEMENT (Optional)
STATE OF ARKANSAS) COUNTY OF)
Before me, the undersigned authority, on this day personally appeared of a corporation, known to me to be the person whose name is subscribed to the foregoing instrument(s), and acknowledged to me that he executed the same for purposes and considerations therein expressed, in the capacity therein stated and as the act and deed of said corporation.
Given under my hand and seal of office on this day of, 2004.
Notary Public in and for County, Arkansas
My commission expires

	Amerimax Avera	ige Flows and R	ates for the	e Six Month	Period
		A	uminum	Galvanized	
Average Flow	w (GPD) per Six Months =		2688.27	294.34	gpd
Average Pro	duction Rate (sq-ft/day) =	a and a state of the	47,965	5,186	sq-m/day
	Allowa	ble Limits for th	ne Six Mon	th Period	
To Determin	e the Allowable Limit (mg/l). Ameri	max may use actual	volumes (liter	s) and the coat	ed surfact area (sq-m).
Therefore, th	he volume of wastewater discharge	d in the six month p	eriod for each	operation equ	als:
Alum:	Total Alum gallons X 3.785 liters/g		1,851,872		
Galv:	Total Galv gallons X 3.785 iters/ga	ilion =	202,760 l	iters	
The surface	area coated for each operation equa	als:			
Alum:	total sq-ft / 10.76 sq-ft/sq-meter=	<u>.</u>	8,729,576 s	a-meters	
Galv:	total sq-ft / 10.76 sq-ft/sq-meter=		943,847 s	•	
oun			5 10,017 0	,	
The allowab	le milligrams of metals in the waster	water for the six mo	nth period is:		
	Galvanized				
Chromium:	0.052 mg/sq-m X 943847 sq-m =		49,080 r	ng	
Copper:	0.21 mg/sq-m X 943847 sq-m =		198,208 r	ng	
Cyanide:	0.028 mg/sq-m X 943847 sq-m =		26,428 r	-	
Zinc:	0.15 mg/sq-m X 943847 sq-m =		141,577 r	ng	
	Aluminum				
Chromium:	0.72 mg/sq-m X 8729576 sq-m =		628,529 r	-	
Cyanide:	0.038 mg/sq-m X 8729576 sq-m =		331,724 r	-	
Zinc:	0.20 mg/sq-m X 8729576 sq-m =		1,745,915 r	ng	
The math m	odel assumes two plants (one which	n coats alum and the	other coats g	alv). We	
	ume that an the wastewater during		-		
One tank co	ntains all the wastewater for the alu	im plant and has 18	51872 liters in	it.	
	nks contains all the wastewater from	m the galv plant and	has 202760 li	ters in it.	
The concent	rations of metals in the tanks are:				
S. S		YA.	All and a state of the state of		
Chromium:	Galvanized / 49080 mg / 202760 liters =	• 0.24 mg/l)		
Copper:	198208 mg / 202760 liters =	0.24 mg/l	and the second s	\frown)
Cyanide:	26428 mg / 202760 liters =	0.13 mg/l	5		OUTPOL
Zinc:	141577 mg / 202760 liters =	0.70 mg/l	<i>i</i>		VIICCU
	<u>.</u>	6.	21		
	Aluminum		\sim	c]	overect llowable
Chromium:	628529 mg / 1851872 liters =	0.34 mg/l	- Harverton		
Cyanide:	331724 mg / 1851872 liters =	0.18 mg/l	1	m	ionthy
Zinc:	1745915 mg / 1851872 liters =	0.94 mg/l	/		N N
~	L.		L	1	imits
	\backslash	A		I	1
	· · · / ^				

AMX	Pro	duction	Based	Standards

AMERIMAX COATED PRODUCTS HELENA, AR

Measured (mg/liter) (during aluminum production) Measured (mg/liter) (during galvanized production)	<0.007 <0.007	<0.01 <0.01	0.190 0.200	<0.006	<u>,</u>
Plant Allowable (mg/liter) (ex. Cr. 4458 / 13517.31 = 0.33)	0.33	9.17	0,92	0.10	
Plant Allowable (mg/day) (ex. Cr. (628529 + 49080) / 152 = 4457.96)	4457.96	2356.26	12417.71	1304.00	
(ex. Cr. 10155790/10.76*0.052 = 49080)					
Monthly Average Galvanized Steel 455.25 Regulatory Allowance (mg/sqrneter) Plant Allowable (mg/period) (w C 404 ETD 140 75 1 0 52 - 40090)	0.052 49,080	0.028 26,428	0.15 141,577	0.21 198,208	
Monthly Average Aluminum 465.35 Regulatory Allowance (mg/sqmeter) Plant Allowable (mg/period) (ex. Cr. 93930238/10.76 * 0.072 = 628529)	0.072 828,529	0.028 331,724	0.20 1,745.915		
Measured (mg/liter) (during aluminum production) Measured (mg/liter) (during galvanized production)	<0.007 <0.007	<0.01 <0.01	0.190 0.200	<0,006	<u> </u>
Plant Allowable (mg/liter) (ex. Cr. 11145 / 77749.96 ≖ 0.82)	0.14	0.08	0.39	0.04	
Daily Maximum Plant Allowable (mg/day) (ex. Cr. (1571324 + 122700) / 152 = 11144.89)	11144.89	5890.65	30314.73	2732.19	
Plant Allowable (mg/period) (ex. Cr: 10155790/10.76 * 0.13 = 122700)	122.700	00,009	030,040	413,283	
Daily Maximum Galvanized Steel 465.25 Regulatory Allowance (mg/sqmeter)	0.13 122.700	0.07 66.069	0,35 330,346	0.44 415.293	
Daily Maximum Aluminum 465.35 Regulatory Allowance (mg/sqmeter) Plant Allowable (mg/period) (ex. Cr. 939302238 / 10.76 ° 0.18 = 1571324)	0.18 1.571,324	0 095 820,310	0.49 4,277,492		
	<u>Cr</u>	CN	Zn	<u>Cu</u>	
Aluminum Line Prod'n Rate (Total Sq Footage for 9/1/2011 thru 1/12/2012)		93,930,238	8,729,576	m²	
Galvanized Line Prod'n Rate (Total Sq Footage for 3/1/2012 thru 8/31/2012)		10,155,790	943,847	m ²	
Average Flow (gpd) Max Flow (gpd).		3,571.29 20,541.60	13,517.31 77,749.96		
Total days in reporting period Total Flow for the period (gal)		Data Entry Col 152.00 542,835			,
Report Date: September 2012 to February 2013		Data Cata Cal			

The "Plant Allowable" for Galv & Alum should be compared with the analyses submitted by AMX; AMX must sample at least once during the time when the line is running Galv and at least once when the line is running Aluminum. The assumption made is that the one analysis is representative of the six month period for the basis metal of concern.

> Does not comply with model. Model assumes all wastewater flows to two tanks and allowable conc simils are in dependent of the number of days in reporting period.

ANERICAN COMPONENTIAL LABORATORIES

.

CHAIN OF CLISTODY / ANALYSIS REQUEST FORM

	Jested AIC Control No;			Carrier:				Remarks						Field pH calibration		Buffer: .	H = HCl to pH2 T = Sodium Thiosultate	Z = ZINC BOEIZIE	Date/Time Received Date/Time By:	Data/Time Received in Lab Date/Time	By // 0	10han 14 were 1 4:50 mm	1	12751 827 03 1005 8521	,	Page 1 of 1
	I Analyses Requested	*	ヮ	6- 6-	z '. z '	כיי כיי כיי		or and the second se	7	~	-7	2			8.8.8			TRACTO COLORIDA CONTRACTOR	Relinquishèd By:	Datin weights werd			Comments:	~		140.000 Tearnstate Atsiants CCXC.x18
CLODING TO NIKUS	PO No. No	6.000075400	Cremela	Matrix	M			د ها د ها	gan 1	1	1 N N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Container Tune	Preservative	astic	S = Sulfuric acid pH2 N = Nitri			ns: Caller Deck Lag	DOCK ERY	24, Hellers. AR 72.842	GDOCKERY @ AMERIMAX. COM		
		Client: AMERIMAK	Project	Reference: WHY IL WATER THINK I	Manager GORDON DOCKERY	npled	Γ	No Identification Collected	CALV RUN 1	ł-	Constitution and and	V alle Re Y ZI-17			il story	Draza	G = Glass	NO = none	08	Expedited results requested by:	Who should AIC contact with questions: <u>Contract</u> Phone: @70 995 0574 Fax:	Report Attention to: C-avav~	*	GDOCKER		

. : : .

J.COC Temptates

Form 0060 May 2001

Second Science

N

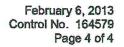
with holimbos

•

February 6, 2013 Control No. 164579 Page 3 of 4

Amerimax Coated Products, Inc. 215 Phillips 324 Road Helena, AR 72342

ANALYTICAL RESULTS


AIC No. 164579-1 Sample Identification: GALV Run 1,2 2-1-13 9am

Analyte		Result	RL.	Units	Qualifier
Total Cyanide SM 4500-CN C,E	Prep: 04-Feb-2013 0950 by 302	< 0.01 Analyzed: 04-Feb-	0.01 2013 1807 by 302	mg/l Batch: W42432	
Chromium EPA 200.7	Prep: 04-Feb-2013 1330 by 271	< 0.007 Analyzed: 05-Feb-	0.007 2013 1334 by 305	mg/l Batch: \$33952	
Copper EPA 200.7	Prep: 04-Feb-2013 1330 by 271	< 0.006 Analyzed: 04-Feb-	0.006 2013 2026 by 305	mg/l Batch: S33952	
Zinc EPA 200.7	Prep: 04-Feb-2013 1330 by 271	0.20 Analyzed: 04-Feb	0.002 2013 2026 by 305	mg/l Batch: S33952	

AIC No. 164579-2

Sample Identification: ALUM Run 3,4 2-1-13 4pm

Analyte		Result	RL	_ <u>Units</u>	<u>Qualifier</u>
Total Cyanide SM 4500-CN C,E	Prep: 04-Feb-2013 0950 by 302	< 0.01 Analyzed: 04-Feb	0.01 -2013 1809 by 302	mg/l Batch: W42432	
Chromium EPA 200.7	Prep: 04-Feb-2013 1330 by 271	< 0.007 Analyzed: 05-Feb	0.007 -2013 1339 by 305	mg/l Batch: S33952	
Zinc EPA 200.7	Prep: 04-Feb-2013 1330 by 271	0.19 Analyzed: 04-Feb	0.002 -2013 1820 by 305	mg/l Batch: S33952	

Amerimax Coated Products, Inc. 215 Phillips 324 Road Helena, AR 72342

LABORATORY CONTROL SAMPLE RESULTS

	Spike									
Analyte	Amount	%	Limits	RPD	Limit		Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	0.1 mg/l	105	85.0-115	SPEECE STATES OF THE	S Jacobaltanteristan	W42432	04Feb13 0950 by 302	04Feb13 1743 by 302	CONCEPTION OF CO	100000000000000000000000000000000000000
Chromium	0.5 mg/l	99,5	85.0-115			S33952	04Feb13 1330 by 271	05Feb13 1403 by 305		9
Copper	0.5 mg/i	98.9	85.0-115			S33952	04Feb13 1330 by 271	04Feb13 1845 by 305		
Zinc	0.5 mg/l	100	85.0-115			\$33952	04Feb13 1330 by 271	04Feb13 1845 by 305		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Sample	Spike Amount	%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	164470-1	0.1 mg/l	99.6	75.0-125	W42432	04Feb13 0950 by 302	04Feb13 1747 by 302		sa persenanana)
5	164470-1	0.1 mg/l	102	75.0-125	W42432	04Feb13 0950 by 302	04Feb13 1748 by 302		
	Relative Per	cent Difference:	2.49	20.0	W42432				
Chromium	164560-1	0.5 mg/l	97.2	75.0-125	\$33952	04Feb13 1330 by 271	05Feb13 1407 by 305		
	164560-1	0.5 mg/l	92.8	75.0-125	S33952	04Feb13 1330 by 271	05Feb13 1412 by 305		
	Relative Per	rcent Difference:	4.44	20.0	S33952				
Copper	164560-1	0.5 mg/l	98.5	75.0-125	S33952	04Feb13 1330 by 271	04Feb13 1850 by 305		
	164560-1	0.5 mg/l	97.9	75.0-125	S33852	04Feb13 1330 by 271	04Feb13 1854 by 305		
	Relative Per	rcent Difference:	0.595	20.0	S33952				
Zinc	164560-1	0.5 mg/l	92.1	75.0-125	S33952	04Feb13 1330 by 271	04Feb13 1850 by 305		
	164560-1	0.5 mg/l	91.4	75.0-125	S33952	04Feb13 1330 by 271	04Feb13 1854 by 305		
	Relative Per	rcent Difference:	0.676	20.0	S33952				

LABORATORY BLANK RESULTS

				QC			
Analyte	Result	RL	PQL	Sample		Analysis Date	Qual
Totel Cyanide	< 0.01 mg/l	0.01	0.01	W42432-1	04Feb13 0950 by 302	04Feb13 1741 by 302	-top://www.cada
Chromium	< 0.007 mg/l	0.007	0.007	S33952-1	04Feb13 1330 by 271	05Feb13 1358 by 305	
Copper	< 0.006 mg/l	0.006	0.006	S33952-1	04Feb13 1330 by 271	04Feb13 1841 by 305	
Zinc	< 0.002 mg/l	0.002	0.002	S33952-1	04Feb13 1330 by 271	04Feb13 1841 by 305	